the Energy to Lead

Hybrid Membrane/Absorption Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE-0004787

S. James Zhou, Shiguang Li, Dennis Rocha, and Howard Meyer, *GTI* Yong Ding and Ben Bikson, *PoroGen*

> NETL CO₂ Capture Technology Meeting July 9, 2012

Introduction to GTI and PoroGen

gti

- Not-for-profit research company, providing energy and natural gas solutions to the industry since 1941
- Facilities
 - 18 acre campus near Chicago
 - 200,000 ft², 28 specialized labs

- Materials technology company commercially manufacturing products from high performance plastic PEEK (poly (ether ether ketone))
- Products ranging from membrane separation filters to heat transfer devices

Project overview

- Funding: \$3,736 K (DOE: \$2,986 K, Cost share: \$750 K)
 - BP1 budget: DOE: \$799 K, Cost share: \$200 K (20%)
 - BP2 budget: DOE: \$1,036 K, Cost share: \$262 K (20%)
 - BP3 budget: DOE: \$1,149 K, Cost share: \$287 K (20%)
- **Performance period**: Oct. 1, 2010 Sept. 30, 2013

Project participants:

- GTI: process design and testing
- PoroGen: membrane and membrane module development
- Aker Process Systems: economic analysis
- Midwest Generation: providing field test site

Objective and scope

What is a membrane contactor?

- High surface area membrane device that facilitates mass transfer
- Gas on one side, liquid on other side
- Membrane does not wet out in contact with liquid

5

 Separation mechanism: CO₂ permeates through membrane and reacts with the solvent; N₂ does not react and has low solubility in solvent

Comparison to conventional membrane process

Membrane technology	Need to create driving force?	CO_2/N_2 selectivity (α)	Can achieve >90% CO ₂ removal and high CO ₂ purity in one stage?
Conventional membrane process	Yes. Feed compression or permeate vacuum required	Determined by the dense "skin layer", typically $\alpha = 50$	No. Limited by pressure ratio, multi-step process required*
Membrane contactor	No. liquid side partial pressure of CO ₂ close to zero	Determined by the solvent, $\alpha > 1000$	Yes

PoroGen

* DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update, May 2011

Process description

Process identical to DOE's benchmark technology amine plant except membrane absorber and desorber are used instead of absorption and regeneration towers

PoroGen has a patented process for preparation of nano-porous PEEK hollow fiber membrane

Hollow fiber morphology, and pore size are continuously improved to meet membrane contactor operating requirements

Two types of super-hydrophobic membranes under development

a) Nano-porous PEEK hollow fiber membrane

b) Composite PEEK hollow fiber membrane **Thin layer (0.1 μm) of smaller surface pores**

Asymmetric porous structure

Super-hydrophobic surface not wetted by alcohol

Alcohol droplet

Membrane intrinsic CO₂ permeance exceeded initial target for commercial performance

Membrane module design and scale-up

BP1: Membrane Absorber Study

Bench-scale membrane absorber CO₂ capture performance demonstration

- <u>Feed</u>: Simulated flue gas compositions $(N_2 + CO_2)$ saturated H₂O, SOx, NOx, O₂) at temperature and pressure conditions after FGD.
- <u>Membrane module</u>: Performance can be essentially linearly scaled to commercial size modules.
 - Uncertainty exists because gas/liquid contactor interface issues
 - Additional factors affect mass transfer coefficient
- <u>Solvents</u>: Commercial aMDEA (40 wt%) and activated K₂CO₃ (20 wt%), testing of advanced solvents planned.
- Use of design of experiment test matrix: totally over 140 tests.

Activated methyldiethanolamine = aMDEA

Module for lab testing (Ø2" x 15" long, 1m²)

Technical goal achieved with commercial aMDEA and K_2CO_3/H_2O

Module 2PG285, 1100 GPU

Parameters	Goal	aMDEA	K ₂ CO ₃
CO ₂ removal in one stage	≥ 90%	90%	94%
Gas side ΔP , psi	≤ 2	1.6	1.3
Mass transfer coefficient,(sec)-1	≥ 1	1.7	1.8

CO₂ removal rate is not affected by O₂ SOx, and NOx contaminants in feed

Module 2PG286, 1000 GPU

<u>Measured results</u> :			
CO ₂ removal	91%		
Mass transfer coefficient,(sec) ⁻¹	1.6		
Gas side ΔP , psi	1.6		
CO ₂ capture rate, kg/h/m ²	0.5		

Compared to conventional amine scrubber

 15% less of the inlet SO₂ was absorbed by the solvent as compared with conventional column. The formation of heat-stable salts will be reduced.

14

Another test showed CO₂ removal rate is not affected by NO_x

BP2: Membrane Desorber Study

qti

Bench-scale membrane desorber CO₂ stripping performance demonstration

- Membrane module: Performance can be essentially linearly scaled to commercial size modules
- Liquid feed: CO₂ loaded aMDEA and activated K₂CO₃ rich solvents, flow rate: 0.2-0.7 L/min
- Four flow configurations (Modes) investigated: over 60 tests

Module for lab testing (Ø2" x 15" long, 1m²)

Examples of Modes for solvent regeneration

High CO₂ stripping rate and high regeneration efficiency obtained

- CO₂ stripping rate: <u>4.1 kg/m²/h</u>, <u>10 times higher</u> than the absorption rate. Thus, only <u>10%</u> membrane area is required for regeneration.
- CO₂ purity: 97% (target is 95%), 3% is water vapor, can be further condensed.
- Regeneration efficiency: <u>66%</u> in one stage, and can be further increased by increasing operation temperature and optimizing process design.

Phase II technical goal achieved

Parameters	Goal	Mode III	Mode IV
CO ₂ purity	≥ 95%	97%	97%
CO ₂ stripping rate (kg/m ² /h)	≥ 0.25*	2.8	4.1

* Calculated based on a mass transfer coefficient of 1.0 (sec)⁻¹ for regeneration

Updated COE and increase in COE when use of membrane regeneration is considered

Casa	COE,	Increase
Case	mills/kWhr	in COE
DOE Case 9 no capture	64.00	
DOE Case 10 state of the art (amine plant)	118.36	85%
BP1 status: membrane absorber	100.11	56%
BP2 status: membrane desorber	98.67	54%

R&D strategy to meet DOE's target

Case	COE, mills/kWhr	Increase in COE	
DOE Case 9 no capture	64.00		
DOE Case 10 state of the art (amine plant)	118.36	85%	
BP1 status: membrane absorber	100.11	56%	
BP2 status: membrane desorber	98.67	54%	
R&D strategy to meet DOE's target			
1) Module cost ↓ from \$80 to \$30/m ²	95.64	48%	
2) Advanced solvent	On trajectory to meet DOE target		

gti

Plan for the rest of BP2

#	Plans for future testing in BP2
1	Further membrane development based on regeneration testing results so far.
2	Modes III and IV are currently down selected for further study. Operation conditions will be further optimized to down select one mode for Phase III.
3	After regeneration mode is down selected, use of reflux in membrane desorber to improve regeneration efficiency (target: "lean" solvent lean enough for membrane absorber).
4	Refinement of the process economics based on the lab test data .
5	Finalize testing plan for Phase III.

gti

Readiness and Plan for BP3: Integrated Absorber/Regeneration

Membrane contactor skid constructed

Desorption tower (backup plan)

Designed for 25 KW equivalents of CO₂ capture (0.5 ton/day) Phase I: absorption Phase II: regeneration Phase III: Integrate absorption/regeneration for field testing

CO₂ removal rate > 90% during the time investigated (120 hours)

Gas side pressure drop stable and remained less than 0.7 psi (target is less than 2 psi)

Plans for Future Testing and **Development**

Plans for future testing and development in this project

Technology implementation timeline after this project

Time	Development	CO ₂ capture, Ton/day	Module diameter	Projected # of modules*
By 2013	25 kWe bench-scale (Current project, Phase III)	0.5	4 or 8-inch	1 (more than sufficient)
By 2015	2.5 MWe pilot scale	50	8-inch	17
			16-inch	5
By 2018	25 MWe demonstration	500	8-inch	170
			30-inch	14

* Calculated based on:

- CO_2 flux of 1.2 kg/m²/h
- Module area:
 - Current Ø8-inch module: 100 m²
 - Projected Ø16-inch module: 400 m²
 - Projected Ø30-inch module: 1400 m²

PoroGen has equipment capacity to produce 8-inch modules for several 25 MWe demonstration plants

Summary

BP1 membrane absorbers

- Technical goal achieved: ≥90% CO₂ removal in one stage; gas side pressure drop: 1.6 psi; mass transfer coefficient: 1.7 1/s
- Feasibility of contactor module scale-up demonstrated
- Economic evaluation based on membrane absorber only indicates a 56% increase in COE.
- BP2 membrane desorbers
 - Technical goal for CO₂ purity (97%) and CO₂ stripping rate (4.1 kg/m²/h) achieved. Operation optimization is on-going to ensure "lean" solvent is lean enough for membrane absorber
 - Evaluation per membrane absorber + desorber testing so far indicates a 54% increase in COE.
- In preparation for <u>BP3</u>
 - Completed constructing bench-scale membrane skid, integration of membrane absorber/regeneration tower, membrane module and performance stable with aMDEA solvent.

Acknowledgements

- Financial support
 - DOE-NETL
 - ICCI (Illinois Clean Coal Institute)
 - Midwest Generation
- DOE NETL José Figueroa

